
24. Shown above is a slope field for which of the following differential equations?
A) $\frac{\mathrm{dy}}{\mathrm{dx}}=1+x$
B) $\frac{\mathrm{dy}}{\mathrm{dx}}=x^{2}$
C) $\frac{\mathrm{dy}}{\mathrm{dx}}=x+y$
D) $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{x}{y}$
E) $\frac{d y}{d x}=\ln y$
27. Which of the following could be the slope field for the differential equation $\frac{d y}{d x}=y^{2}-1$
(A)

(B)

(C)

(D)

(E)

15. The slope field for a certain differential equation is shown above. Which of the following could be a solution to the differential equation with the initial condition $\mathrm{y}(0)=1$?
A) $y=\cos x$
B) $y=1-x^{2}$
C) $y=e^{x}$
D) $y=\sqrt{1-x^{2}}$
E) $y=\frac{1}{1+x^{2}}$
2. Indicate which differential equation is represented in the slope field graph.

$x:[-6,6]$ y $(-4,4]$
A) $\frac{d y}{d x}=x^{3}$
B) $\frac{d y}{d x}=\sqrt[3]{x}$
C) $\frac{d y}{d x}=\tan ^{-1} \mathrm{x}$
D) $\frac{d y}{d x}=x^{\frac{-2}{3}}$
E) $\frac{d y}{d x}=x^{\frac{2}{3}}$
4. Consider the differential equation $\frac{d y}{d x}=2 x-y$.
a. On the axes provided, sketch a slopefield for the given differential equation at the twelve points indicated, and sketch the solution curve that passes through the point $(0,1)$

b. The solution curve that passes through the point $(0,1)$ has a local minimum at $\mathrm{x}=\ln (1.5) . \quad$ What is the y -coordinate of this local minimum?
c. Let $y=f(x)$ be the particular solution to the given differential equation with the initial condition $f(0)=1$. Use Euler's method, starting at $x=0$ with two steps of equal size, to approximate $\mathrm{f}(-.4)$. Show the work that leads to your answer.
d. Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Determine whether the approximation found in part (c) is an overestimate or underestimate. Justify your answer.
5. Consider the differential equation $\frac{d y}{d x}=\frac{y-1}{x^{2}}$, where $x \neq 0$.
a) On the axis provided, sketch a slope field for the given differential equation at the nine points indicated.

b) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(2)=0$.
c) For the particular solution $\mathrm{y}=\mathrm{f}(\mathrm{x})$ described in part (b), find $\lim _{x \rightarrow \infty} f(x)$.
5. Consider the differential equation $\frac{d y}{d x}=\frac{1}{2} x+y-1$.
a) On the axis provided, sketch a slope field for the given differential equation at the nine points indicated

b) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Describe the region in the $x y$ plane in which all solution curves to the differential equation are concave up.
c) Let $y=f(x)$ be a particular solution to the differential equation with the initial condition $f(0)=1$. Does f have a relative minimum, a relative maximum, or neither at $x=0$? Justify your answer.
5. Consider the differential equation $\frac{d y}{d x}=\frac{1+y}{x}$, where $x \neq 0$.
a) On the axis provided, sketch a slope field for the given differential equation at the eight points indicated

a) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(-1)=0$ and state its domain.
5. Consider the differential equation $\frac{d y}{d x}=(y-1)^{2} \cos (\pi x)$, where $x \neq 0$.
a) On the axis provided, sketch a slope field for the given differential equation at the nine points indicated

b) There is a horizontal line with equation $\mathrm{y}=\mathrm{c}$ that satisfies this differential equation. Find the value of c
c) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $\mathrm{f}(1)=0$.
6. Consider the differential equation $\frac{d y}{d x}=\frac{-2 x}{y}$, where $x \neq 0$.
a) On the axis provided, sketch a slope field for the given differential equation at the twelve points indicated

b) Let $y=f(x)$ be the particular solution to the differential equation with initial condition $f(1)=-1$. Write an equation for the line tangent to the graph of f at $(1,-1)$ and use it to approximate $f(1.1)$.
c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(1)=-1$.
6. Consider the differential equation $\frac{d y}{d x}=\frac{-x y^{2}}{2}$. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be the particular solution to this differential equation with the initial condition $\mathrm{f}(-1)=2$.
a) On the axis provided, sketch a slope field for the given differential equation at the twelve points indicated

b) Write an equation for the tangent line to the graph of f at $\mathrm{x}=-1$.
c) Find the solution $y=f(x)$ to the given differential equation with the initial condition $f(-1)=2$.
6. Consider the differential equation $\frac{d y}{d x}=\frac{-x y^{2}}{2}$.
a) On the axis provided, sketch a slope field for the given differential equation at the twelve points indicated

b) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $\mathrm{f}(0)=3$.
6. Consider the differential equation $\frac{d y}{d x}=x^{4}(y-2)$.
a) On the axis provided, sketch a slope field for the given differential equation at the twelve points indicated

b) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $\mathrm{f}(0)=0$.

